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SOLUTION OF CERTAIN BOUNDARY PROBLEMS OF MATHEMATICAL
PHYSICS BY THE COLLOCATION METHOD

A. I. Ivanov

ABSTRACT: Presented in this article is a very simple and
effective means of solving a number of boundary problems of
mathematical physics by the collocation method. Questions
concerning existence, and convergence: of approximate solu-
tions found with this method are discussed in the work.
Estimates of the speed of convergence of approximate solu-
tions on the exact solution are included.

INTRODUCTION

The collocation method, or interpolation method, is mathematically simple /3*
and requires no special preliminary information; at the same time it is an
effective means of solving various problems in mathematical physics. This
method is promising from the standpoint of computer technology, since it requires
very little manual labor. Meanwhile much less attention has been devoted to it

in the mathematical literature than to other methods.

The solution v of the differential equation describing some physical
process whould be determined according to given functions f. Information about
functions f derived from experiment is usually presented in tabular form. This
is very convenient in terms of application of the collocation method. Further-
more the approximate solution found by the interpolation method is polynomial

in terms of the corresponding variables, which is useful in theoretical analysis.

Questions of the existence, convergenceand speed of conversions of approxi-

mate solutions in the case of boundary problems for the elliptical and parabolic

*Numbers in the amrgin indicate pagination in the foreign text.



equations, stationary and non-stationary Navier-Stokes equation system of

a viscous incompressible fluid are discussed in this article. /4

1. Interpolation method of solving boundary problems for elliptical

equations.

We will examine the first boundary for the equation

D, dle 7 Alr

(D

in a circle @ of radius R. Here p,¢ are polar coordinates. At the boundary of

the circle @

is satisfied.

The approximate solution of problem (1,2) is sought in the form
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The collocation method consists in the fact that the unknown functions

uu

{f) ” -o g4,

are determined from a system of 2n + 1 equatlons

[Arar 3 f(!.f g-’ 9“'- «, y* 0 1)
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where X, =0,4..,2n, -

are fixed numbers, called nodes of 1nterpolat10n We will assume
-j"_. Lo : .
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We shall study the problems of convergence and rate of convergence of the

approximate solutions obtained by this method to the exact solution. /5

We shall assume that there exists a solutionru‘{y,y; problem (1,2) twice

continuously differentiable in terms of (p,¢) in Q.
The following assumptions are made: 1) the function ﬂf Yif}",ﬂ) is Holder-
-continuous with index ;‘:'O‘SH relative to (p,¢) uniformly in terms of(e%uj

the range V= iff;??jgy w: now where - (’,r)cﬁ,fu-u?y,msg,, : _g%‘ (,.”[‘,“[%_g
®.9KKg,), are q;,d,,4; constants; 2) The functions

&‘_fb’. g.g,ﬂ;’é b, g:g';-" ,ﬁ!y%k,%,“) are defined and continuous in
range V; 3) The hqr_nfageneous problem
3 mﬂW%f %hr}fh ,ﬁhﬂ.t,,,g.
(e, gs @9, 07, e )u, (v e
"6--.

has only a zero solution,

Analysis of convergence is based on the results of the theory of projection

methods [1]. We denote the following:

= a,,<"qn, & e,
Lnea,, . o), (pm e,

In view of the assumptions relative to solution u*(p,¢) the function 9’(}.’-’

is continuous in Q.

We will introduce the following Banach spaces. C(s‘a] is the space of the

functions u(p,?9), non-continuous 1n Q.with the standard '“'c m".;}?:h!um:ﬁf,

u(p,¢), is the space of functions M, (ﬁ) , equal to zero when p = R, con-
tinuous along with ¢ i‘.‘t’p ¥, g;(yg ¢ with bounded standard ﬂuﬂ# tﬁ)'
”H"g (ﬁf-. !“l + ’3"“,; ! Ig,
where / ?5-'[5(,"‘("’:', [%(= mfﬂ';-il P,a’)j
< Trp = dup (SEMIGII
@0, g e (VG pT (-5 )’
0<§<d,



- H‘-(ﬁ) - is the space of continuous functions with bounded standard
il e (3D 1«/+<u>, 0<5¢1,

We will assume that for '_f_? '_f' ﬂ}i_-_o___, unique approximate solutions exist

u, (p,$) with bounded standard “’ﬁ,.t!i.t

Let us examine the following boundary problem:

8,016, (heR,;

“oe™?
where the function C(R) is a set of space 2(,9).

Let us switch to Cartesian coordinates:

a t{a:., )-}‘"& %)+ g;gfr. n). ¥ ¥(x, ;ngﬁ,
: s

(61)

2"*#. 0 .,‘
where Az, =L20,9], J'"? y-mﬁ?
;.(x,,x,;-fufp.’?] = JaeRT, Ysmarctundte #

It is clear that 5(&.*_;) is a non-continuous function in Q.

Boundary problem 6ty, if Efr”a)f-lo fﬂ) has a unlque generallzed solution
e fay x,) € \,J -O-)r and the estimate I‘& £ s valid,
&, 3) y w(n’ g.ﬂz&(QJ’ i i

where q, is a constant, p > 1 [2].
W
Definitions of spaces L (7-) (Q) can be found, for instance, in [3]. /7

In view of the enclosure theorem [3] " 5’; (ﬂ}‘ P #}yw"(ﬂ) , the en-
1+6 P

closure operator is completely non-continuous when § é*@, A » is a constant.

/ s(ﬁ) ~ is a space of func:tmns ¥ (x, (x 5], equal to zero when zt,xrsg*
continuous along with 3—}{" %), fl(x,,r.) in Q.with limited bound HHIE &)
Bound 71'_”1' (1'&1’ like ”"‘"' §(5) is determined with substitutions of the

symbols p,¢ for X;s X

5"
From the last estimaj:_e- we h_ave: ] ’u”f-? L o (D). 5 % 'M‘s.s (ﬁJ



where qg» 4, are constants.

In other words, there exists a linear, completely continuous operator A,

acting from C(Q) on ,ﬁ,‘,fﬁ) with bound /A4 € 260522y -

Thus, if the functions ?,,(_p,vj ’ deflned by relatlonshlps 5; B 5§ 452 wuuy
belong to C(R) , then for functions «'(p,¥W-u,( ¥, ¥P.Y~2EY in view of (7),

the inequalities

F e,y ‘?42:2637)?2 "2, 5 - (8)

+¥ (

will be satisfied.

Since operator A is bounded we may take in space C(®) a sphere #z -2 é{
with radius g, so small that the functions u (p,¢) = AZ (p,d), #z- ?7 ﬁv“d
will satisfy th?_?nequalltles Pade Souc, | W e
S, B Yoy, I -FFAVIS3,, o€l
We will proceed from (1), (2) to the task of finding the function 3”},3)}
belonging to space C(2), satlsfylng the equation

26:9=fp.2 .3 ﬁacp. 9,2 hap. 9, A26.5) = PB2 (6.9, ©)

Here P is the linear bounded operator of enclosure of H5 (@) and C @, £§_

8’=f(y y.ﬁﬁ ; ,33,9

is the operator acting from set V 12; ||z } cC(Q) in space

Hé(ﬁj, Operator B is completely continuous in set V in view of the perfect con-

tinuity of operator A and condition 1).

From (3), (4) of determning the approximate solution un(p,¢) we proceed

to the problem of finding the function that satisfies the operator equation

e 2 32 )== _ (10)
where Pn is the projector that places in correspondence each function Y (p,¢)
continuous with respect to ¢ according to its trigonometric interpolation
polynomial of the order n with nodes ¢ (n),m = 104 1 , 2n, in terms of the
variable ¢. However 2_(3* u"a,.”-. is a trigonometric polynomial of order
<-n in terms of ¢. This means Pn Zn = Zn, and we proceed from (10) to the

equation v



2 = e. i‘.!”- (l 1)
Note that P is a linear bamnded operator acting from H6 () on C(2).
Accord1ng to the 1nterpolat10n theorem [4], for any Z € H6 (€) we shall have
ﬂPS*Pil with n - + o,
In view of condition (2) the operator PB is continuously Freshe-differentiable
at the point Z*(p,¢) in space C(ﬁ). We will prove that the homogeneous

equation h = PB”(Z*)h has only a trival solution. This equation is equivalent

to finding the solution u(p,$) of the problem

A_y_;“.g - a__;(j?:f '(P,)g“(.ﬂ:')u@,:r)f-+ﬁ (p,¥ ,J-H(P..'d
: 34" 0,9), u*(p,9) 24 + x.’,ff.?.%» %) % 6.9,u%.%)«,

0 .

“oui™

This problem, according to the proposition (3), has only a zero solution.

All conditions of the theorem of convergence of the approximate solutions
on the exact [1, pp. 293-294] are satisfied. We shall present this theorem

here.

Theorem. Let operator B be completely-continuous on set U of Banach space

C(ﬁj, and let equation Z = PB, have the isolated solution Z* €V with a zero

Z
component. Let the projectors Pn be bounded as operators from Banach space

l-{ES (%) to Banach space C(2) and Pn — P strongly with n—. + =,

Then we flnd those n , 1 for which with n = nﬁ the equation Zn = PnBZn has
2 )
in sphere - 'c(ﬁp only one solution in, and all such solutions z for
n — + @ according to the bounds of space C(Q) approach Z*(p,¢). If operator
B is Freshe-differentiable at point z* and the homogeneous equation h = PB”(Z*)h

| 2 : s
has only a zero solution , then the estimate of convergence is valid:

—-___--._‘_‘—\—\
?g’p?"e,i"’q <’2 -7 o) ’3”’3*"8‘7'/"“@: where qg, q, are certain constants.

Yence follows the isolation of z* and the non zero value of the exponent.



If, moreover, operator B is continuously Freshe-differentiable at point z*,
then for sufficiently large n the solution z of equation Zn = PnBZn is unique

- - et -—
in the sphere ff?-?‘%é)\f 92 - of sufficiently small radius 9, 0, <0;.

In view of interpolation theorem [4], Iz P«?'ﬂ ‘ E (2%, %)) (3 "‘warm) /10
where ‘L 2"/ 3))= Boml s E, (?'@‘w)w is the best “uni form approximation
of the function Z*(p,$) by trlgonometrlc polynomials of order not exceeding n

in terms of variable ¢ for fixed /. 0“!"9 3 are absolute constants.

0> 1
For any n solution Z (p,¢) of problem (11) corresponds to solutlon U (p,9)
Tu “«, f‘-‘- . o 1Wh Wu - €
of problem (3), (4) wu:h bound F’,;(ﬁ) » where u ‘% ‘@ 2. g’_gc 9,42,

-y
Thus, the following is valid:
Theorem 1. Let conditions'1), 2), 3), be satisfied. Then we also find

number n 0*%2 such that for n = no the solution Un (p,¢) of problem (3), and

€ 9.9.%%,% and the estimates

(€] belongs to sphere flu=u #
E : u»S(m

T#H,:"U')y# m g« 75%?’2’ n( H'(p‘_!,ﬂ(g” '*g" 6’"-}’
_‘9-"0 A.&r“. P,, A”u“jé(_ﬁf 14y, 0= 8,y 4 I"c'(.iz)":
€ 2’ E‘" (A.P;? u'r'"&))' (9u+ 2" &,n) <

are satisfied.

. Note 1: If the functlon A - u*(p,¢) has a continuous derivative
'37,:[5, u (P-?J ’=04,2..., satlsfying in terms of the argument ¢ the Holder
condlglon with <, Q‘Sj-“’ * miformly in terms of p, then according to the

Jackson theorem [4] £, (A, o4 5,Y) ‘9';%;% {_3_)’(_1,4,1 where q,, is the
Holder constant of the function, .};‘_f .[P”J, 93 is an absolute constant.

Consequently we have the estimates

Iy R3s, a.m‘f—&% ACETE)
”A‘P.y“n __‘Q_P.g"‘ # q) 9, - - (:.:3 (::}).(2%&&':) ;

T~
—
—
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- Note 2. We may apply the method of} collocation to the solution of the
| problem . Page Oni Title

L ) — N = i o

. A,p ““f(.Pr g‘g Q; u,‘ gy e,

B [ + Bu =0

- % ‘Z’zﬂ? ’

If conditions similar to 1), 2), 3)

Note 3, All the results apply with

———————p -

2.. Application of the Col%atlon Me

over
'problem for Navier-Stokes equatlons of a

‘In this section we will use the inter

»F SO (axon of the Stokes problem spec

T WEI

,/\,

lestimates of conversions of the method ak

TQ ((p, ) 70<$y<21r 0<A’9\<\pg¢q;

o g

Pag

!
s we did above.

out change to the case when

)]

thod to a stationary linearized boundary
e Source

Viscous incompressible fluid.

B - U

polation method- to fiﬁd'the'approki;
ifically: nydrodynamiC'vechity

in bound

"’l F pressure p are determined

2y

edi'range @, now belonging

, are satisfied we also obtain the same|

'to two d1men51ona1 Euclidean space from the condlglons:

B T«M T = g; PP, (ﬁ,WGQ (12)
301 ,{\ dz%yz =0, (_p, y’) e " : (13)

N L  R=(00, . '_m;___ (14)

: Here -S is the boundary of .region Q; ¢ are polar coordinates, v is the
35'--Kinematic: coefficient of wviscosity. [ A f deg dyb 3.-Lcurﬂ7cu~ﬂ 3 /

- . . -?l Lo Y-

- For the unique solution (1), (2), {3) we requlre that (15)
Lo | Spde =0

_ [frds=0.

— The approximate solution of problem| (12) - (15) is sought in the form:

K «w) ? @)Y e (2 44).5.3,.
l}Sl . ( w Zno# (P) %;- y'W -

= -,,‘,ng)(Pp y)z z g‘”’@) odn. (ln-w) f“*’ St

- 7 S y- v &n;) '

~ P ’:@ f L () ‘H’M 3

Ls L] —

Even Roman 0dd




The unknown functions 0""09 l’“’ﬁd,c“"b),m-o #..,2n according to the
collocation method, are determined from a system ﬁ,"_! of ordinary differential
b tn__ (nl -
equations [ AAV‘ . deg‘n’ f_]h (o, 0} (16)

and relations

i ;e = 7
[ oin, ¥, zﬁ"’ % (17)
ied = (0,0), m=074,..,62n (18)
f}'f" de =0 :

The convergence of the collocatlon method depends partially on the choice

. G D T (e P L4 L
We will assume y.... - _i?'ﬁ , m=04,...,2n,

In analysing the convergence of the method we will assume that region Q

is a circle, i.e. 0 = = (ip;r).? G‘ﬂ,‘psﬂ,, Os¥<inm).

The functions 3‘;")(!' ¥), 1’::)(?- Y, Gﬁm’_;}m‘?gw are trigonometric polynomials
of an order not exceeding n in terms of variable ¥,0€¥<2» , which have exactly

2n roots. *

Because of this and because of the fact that Q is a circle, relations (17),
(18), (19] are valid for all d¢e(o,2n). /13

We will denote by C(R) the space of continuous Vector-functions
?(P,” (309, 2,(py) with bound I c(?i)'?;!;"n’ €Y, where 1 Z(p, )= meax {f’l p,
b’.ff} v (P :f),} (_(_2) is a space of Vector- functlons 3(_,0, y)= {5 (p 9 %, (’%”J
equal the zero vector on boundary S, continuous along with :-.-U.rP ﬂ ‘h’{f )

on 2, in 9, with bound 53* 5_}‘ thenl;y, s (33 /‘b/‘ / /?3/

where

),‘." T =9l + <>y, "T:‘f'i;-ér-;;ﬁ/u (p. )/,

- 11@(p, ) — 13 (p; )1/
- - 4 u + 3




We say that Vector-function mj’, 1‘}*‘:"*"—'(5,(‘9, )u,{psj) satisfies in @ the

-Q

Holder condltlon with the exponent 6,0 <6 < 1 and Holder constant CuUr

if ‘">S c oo .

H (Q} is a space consisting of all Vector-functions “0’ ¥) continuous in

Q, wlth finite bound ”7’ ""‘?f' * <u>5 L. Q), K3{ o =-

is the Banach phase of Vector-functions with

P.9)= (hG3 A ). - witn I P

= max

{N,’,‘ (n)’”;'z_(m} j e T

2w8

"( jf"*(fﬂf ﬁﬂ’fff:f

. "‘“———--...l_.._..‘_'r . _
We shall denote bj i (ﬁ) w S IF the Banach space of Vector-functions
X 2 3

_afr.:;,):r(i{;&.,amu—ﬁg with bound

“"‘ﬁfr;fn)' M{:w;—hm“),/mo.ﬂ..m)} ¥l )

=( g/‘l-(r.,-r‘)/ d’z-,dr,)*.

We shall write problem (12)-(15) in the Cartesian coordinate system.

e .
\‘Ar““u (x,x,)= deg .’“'lf{-t":‘)a-?(r‘,.x‘) , (Zox)eny
: s ( Q
dUIr:“!:‘ 0, ‘tu':l.) € »
a‘lal = ‘xl e.- ‘o o)
a""* x‘-q"

where w f*., 1.)- ( “g_{xu rg): “l" (J‘,’ xl)),
g fx, x )= % ( Y) ; .
x, 12 "3 _Pa m?'—"' {,,Pa,)*'”’
[% v P Pl

P= arc s
tan

i !F-w arc i-

10

/14



s?"ta-,.r.)= [f(f"ﬂ#m

tanf x,

-.${.r“a-l)= ( R (xun), B (1, :r‘)),

—

]

B, (x,,%)= £ G P
("B =L ey -Lolp W)rin )y
! ¥= arc >

tan!

. | ¥
[P, (o) = [ £, G, 9sin P +Hy 092 oo omr
; &% 2 [fp g "“%i;fg; .

- e

This boundry problem if Q-')(';;,’ x,) € I.” (m, w »7 , has a unique generalized /15
—— T p—— - —rer————— = Tt
solution F(.r,,x‘;,f!eg B %%, and the estimate 7 grad, ﬂz (-CZ)‘ %, qjl‘,fz" (Q),

o 1 1y A

is satisfied, where 44 is some number depending on k [5].

In view of the assumption relative to the Vector-function";-'?» gj, Vector-

function %"‘(,,w ) € L‘ (£2) for any k.

Therefore problem (12)-(15) has a unique solution _"(_P,?), ,degﬂn._,ﬁ(?-x"

and the estimate

Wonad, pll <3, 071
v P e ) Pos 'p&,(_n). (20)
is satisfied, where g is some number depending on k.

Consequently deg _,:;}'0'.3’)=NfCP>"'). is satisfiable, where M is a linear

bounded opeator acting from space Lk(ﬂ) in the same space with bound ¥M¥ & ¢ v

Problem (16)-(19) can be represented in the following form: -
R - W e I =
V8, ¥ teg 5y P ™= 0,/ (pWeQ,
n V=, PYeQ,
—a () ad
% 0
A

’!“‘ — =
where Q_n is the projector that placeseach coordinate of Vector-function f(f'c -7?
into correspondence with its trigonometric polynomial in terms of variable of

€
order n nodes .):_‘""

11



We will note that (), f(y,.?)EH (ﬁ) with any n in view of the assumption /16
relative to the Vector functmn f(p,.?) Therefore, using the same line of
reasonin as above, we establish that problem (16)-(19) has a unique solution
iﬁ@’-i ?”0‘* and the estimate

I"X’ T f"’y K 9, /

1.(Q) . ()2 :
21)
; =) de
r_;f_e%"’f T grfﬂ ‘9ﬂ'”£ of; o)
is wvalid.
We introduce the following definition:
=, e =
e e 348,,% (e Qg
TV, 2= 34,3 (med, (22)
The boundry problem is
4,7 = i'(.P-") Q.J_Q;Q
"’/J.,,,‘.'= (0,0), :
Pxay . oA
where ?Z‘Piy-) €4 (£) has a unlque generallzed solution ‘b(p ¥)with bound
r’la'i‘%"(n).» and, as in Section 1, the estimate
1% ", 5 (@) < Sre 17, o, | (2)
is valid, where 46 is some number depending on k,&.
Corgside_ring relations (12)-(15), (16)-(19), (22) and equation
deg ppp =/7 F, we have the following expressions: .
“i‘(y.r)é?*frf(f, y)+ £lp. %), (p¥) €2,
0= MOF G+ 0F Y, (WS
We shall estirﬁate ff‘i;'?_t"”"(‘(_ﬂj‘ In view of inequality
VE-TU o s h] F
: ke (24)

12



T —

Since ,f/(J’ ¥F) EH.!‘ . - then according to the Berstein theorem [4]
J//F'Q.;?crﬁ)é E,,(f.(f,f’)) 9™ 9"&.”)’ ‘: (2 17,

where (& (9, 7)) = bl ERL A (pie)-ExfAlp ¥) 1 | Expressions
E (/)J’ (f’ 'ﬂ} E" f}*( ;Q_If_ggtemined in this manner in Sectionl. 1In view
of note 1 ",? (p, ) € - where q;, is a constant.

The inequality _
et = A ‘5: f -f')
7= 0t o = 7T gy
is valid, where ;8 is an absolute constant.

(26)

From inequalities (23), (25), (26) we derive

;I"' it;gq_ .._S f— E"( .:"I JJ.) ( 7 = ’f&").
i H;w(fl)?‘?'a o : ?"‘g

Thus the following theorem is valid:

Theorem 2. If vector function f(y,?) € H&-(—_Ci)- and range
n (;P', Qp) 0 <K, <_p SR, Cos ¥< z,) , then the approximate solutions

’ -i(ﬂl

¥ (p, :r,i deg -, ,f (P J’) bound by the collocation method, converge on the

exact solution % (p, ¥) .&eg :VF(P” with the following estimated rate of
convergence:

i l‘: ;i"l,’; ﬁ € gﬁ' ’n 21) (gf.'r‘ l) (’”"’ &7”) (

fol

Ha =
} id " ’? (Qj ?1‘) 2:2 fi,,*’)rﬁ ’z‘enn) (—2')

Ideg Pl = Pyl S 50809, 1 3500 (B

Note 4. The results of this section pertain to the case

34 Tdegf, f’f(uyj

R
0‘” <p<Ry. 0€y<3,.

dﬂ.’?.s- & =0, 0<R, SP<R,, 0os¥< 2w,
4 -—p
! %
| .P-R (00)
-P-R,

< dw 2
Jra e dy <o

13



where ’f,’: y)=(%, (fsyj, (P: ¥, @a’»?{’,’)‘*’“!ﬂ”‘(f#&@;‘-
Here the vector function ?(ﬁ y) has g__nggt_)zents that satisfy the Holder
condition in terms of (p,$) in the range Q ¢ ((f,:r) os R,‘ﬁ(ﬁ' 0‘?121!-)

3. The collocation method for qua5111near second-order parabolic

equations.

We shall consider the first homogeneous boundary problem for a parabolic

equation in the range P‘,- (O m)x (0'7:]

Bl s, weom e,

rxe Lu -Q,(ﬂ%‘l. +a,(t)u, (27)

where e
{u(!‘,O}-O, _3' < fo, ﬂ'J’ - (28)
«(0,¢)=u(mt)=0, t€[ov) (29)

We shall assume: 1) In the clnsed range 6,1. ﬂ,(t‘)s,g"o +is satisfied

where 49 is a constant;

2) The coefficients of operator L are Holder-continuous with exponent
§, &e (0.1), in Qp:
3) The function al(t) is Lipshits-continuous uniformly on (0,T).
We will assume that there exist the solution u*(x,t) of problem (1), (2), /19

(3), twice continuously diffentiable in terms of x and continuously differenti-

able in terms of t in @r'
The following limitations are placed on the function f(’-’at,“:ﬁ)

4) The function f(* pY 75) is Holder-continuous with exponent 8 0<8<e o
relative to (x,t) uniformly in terms of (u, %-) in range G= “’:*:“,g-“)
(=, t)GQ-r,/A' ~§- ~(r,t)!$2“,1§’ a_ﬁ‘l’-r, ,k; ), ~now where 40 is some fixed number:

5) The functions f,“ (xfk,g—j‘ ﬂ‘ (-t' t, u #) are defined and continuous

in region G;

Vfo.t,q;gm t0fpomm t €L0T] /3.
L Y .

14



We will note that conditions 1), 2), 3), and 6) insure a solution u*(x,t)

with the required dlfferentlal properties and sufficiently small T if the

—

function Flx ¥, g— u) is Holder-continuous in bounded subsets of the set

Tint,u,85); (m0.€ O, ~=<us€sm, - T 4 <)
[6, p. 256]
If, however, we 2 add to the conditions s e requirements for the increase of the

function f(x f “, 25“) in ‘terms of the variables u .’ g%_ exists for any T.

We shall proceed to the approximate solution by the collocation method.

We shall seek the approximate solution in the form

un (J‘, é) ;‘.-Z:". ctn(‘;-) W Koy

The unknown functions ?:n(!)-“”=ﬁ---: 7 , according to the collocation
method, are determined from the condition that equation (27) be satisfied

in a given system of points _u-,,,,ffo,m?,‘n :'-:4, ._: , m, i.e., with a system of

n ordinary first order differential equations

[{ﬁ. L)“"‘f]r ,

(30)

w1, . ,n,.

for t € (O.TJ, with initial conditions
Canl®) =0, ®=1.ciyn . (31)

Note that for un(x,t) the initial condition (28) and boundary conditions
(29) will be satisfied.

As the points of interpolation x, we take equidistant points, i.e.,

kn

Armm
Xen™= -i—-——' » I'e 2/ n.,n

The question of the solublllty of system (30) and (31) and of the conver-
sions of approximate solutions un(x,t] to the exact solution u*(x,t) is

answered with the aid of the theory of projection methods [1].

Let 2% (x, t)= 2 x,%) ok &% i} {:re;e (32)
1??'[ s, 61, (33)

2 (x,t)= Quofrt), 4‘,(,*; (xe)eu,

15



In view of assumptions relative to solution u*(x,t) the function Z*(x,t)

is a continuous function in aT :
It is easy to see that the functions Zn{x,t] are equal to zero when
t=0, x=0, x=m.

Let us introduce the following Banach spaces. The space Ef(aT) is the

space of functions Z(x,t), that are contlnuous in QT and equal to zero when

x =0, x=m, t =0 with bound ”I”E'(E)_'r)t max f?(.r -ﬂ/

rx,t)é @
The space }-3' (Q ) - is the space of functions u(x,t), equal to zero /21

when :._o";._n,r 't e [0 7—] re (0 ”), f o, continuous with Iﬁfl‘ »¢) ., with
bound % o

ku ”o / u} - ,

4¢8 (Q ) 8 33/53
Y - o R TR TR
<> = Aup S rt) = (e2¢%)

¢x,¢) (rﬂf)ep (Ix-x%*+ J£- f/),l'

We shall examine in space E(QT) in linear variety E(ET] of functions Z(x,t),
satisfying the Holder condition with exponent condition 60, 60, < §, in set QT‘

This set E(Q-T} is everywhere continuous in space E(ET).

The boundary problem is

%‘," ;Lu = ?(t,“), (=,t) tO.,,‘
 «(x,0 =0, x e (om),
ulot)=u(mt)=0,  tE€[0T]

if the function z(a-,i)--i ?(Q',, with conditions 1), 2), 3), satisfied, has a

unique classical solution u(x,t) then

/ 2oy (34)

"'”ﬁ &(@ < 2;;

where 45 is a constant [6].

= In other words, we have determined a linear bounded operator D, acting from
E(QT) in }?ﬂsfq_) with bound #wa’u' Since E{QT) is everywhere continuous

16



E(Q_T}, operator D can be expanded over an entire space ?f(ﬁr] with the same
bound.

Thus, if the functions %,(x,t)€ C ({))»=%w: for the function

u‘(r,t}-uné:;‘.;j; z‘(é;y-'s,_ri»‘-)' in view of (34), the inequalities

Ta,- o T TR Ll
y H,s(Q) Fas &g’
7 oo - (3%)

will be satisfied.

a0
| .
We shall use ,Ha- ((J?) to denote a Ban'ich space of function u(x,t) equal

to zero when =0, x=w, fffa, 7] and satisfying the Holder condition in Q-T

with (‘50, “6<b:.ﬂ'_ The bound Jul _(ar is defined by the relationship

W P e ¢ e . <e :
iu][#;‘a’:)'lul, + <U>y . Expressions n» Jnj were determined above.

B

Since operator D is bounded we can take in space E(ET) the sphere

_’?;’é(%‘ ¢, of radius 63 so small that the functions u(x,t) = D Z(x,t),

/u-a_"_(_:;*)fk_ga.,/ﬁﬁ_-k‘(;:*}/;;#, ()€ @,

We proceed from problem (27)-(29) tb that of finding the function Z*(x,t),
belonging to space E(ﬁT), satisfying the condition

2(x, f)-_fr ;’?a-,t, .az{:,:),gmcr.ﬂ)zkﬂ z(a_-,'t)_ (36)

Here K is the linear bounded operator of enclosure of ﬁ&( a,) in E(QFT),
N=p(xt ..., ;a,..'b_,, ) is the operator acting from set t;‘(i:"?-é‘,ﬁﬁf 6) <
'Ee’(ﬁ)) in space ﬁ&fa,.) » where 8§ < 8.

The operator changes functions from the set Z € E‘(an) into function
belonging to &-(@r) _, since operator D acts from E[a,r) in ﬂ"s-l;ﬁ.,) and the
function {E—._f,_".k) satisfies condition 4). Space ﬁ‘(a) fits compactly 423
in space ﬁ‘.(a,,) » consequently operator N is perfectly continuous.

17



We will note that z'« E(QJ’ follows from 'r? € E(f?-,-) 2% MN2* since KN
changes from set LZCC ?‘(O) to ’9 ((J,.J & ?(Q,_)

Consequently, if u*(x,t) is a solution to (27)-(29), twice continuously
differentiable in terms of x, continuously differentiable in terms of t in
QT’ then 3("*;_3-9 (). 4“‘(! ¥} is the solution of problem (36), ?r:,t)‘t‘(m
and conversely if Z*(x,t} is the solution of equation (36), the function
u*(x,t) found from boundary problem

;af ~du=2"(x2), ﬁ_(:.*)r‘_@,'
K(x,0)=0, x € (0,m),
«(0,¢) =u(mt)=0, t€[g T]’

will be twice continuously differentiable in terms of x, continuously dif-

ferentiable in terms of t in ET and will be the solution of problem (27)-(29).

From problem (30), (31) of determining the approximate solution of u (x,t)
we will proceed to the problem of finding the function that satisfies the

operator equat ion

K, (2, - P(x, ¢, Dz, £ 23,)) =0, (37)
where Kn is the porjector that places each continuous function ¥(x,t) to
correspond with its interpolation trigonometric polynomial of order of n with
node Twns X =hh P . However 2,, > f;-_a"'-f"-‘) Lu (xt)- is a polynomial of
order n(;t greafer then n in terms of argument x, and this means KZn = Zn, and

from equétion (37) we proceed to the equation
2, =K, Pzt D3, ;’- De,) =K N2, . (38)

Linear bounded operator K acts from J:;UJ to E(QT). Since operator
K N converts ?q'@'w_) to ﬁ‘ (9,) s F((I.) v € ?(ﬁ,). follows from
?” = C(@J, ’.-. Kﬂ”‘n »

From this we derive the relationships of préblems (30), (31) and (38),
analogous to that of problem (27)-(29) and (36).

In view of interpolation theorem [4] for any 2 € #l'. _(‘r"-r)_ .we have

K. 2 - IFTE.{CU

for a — » o,

18



In view of conditions 5) operator KN is continuously Freshe-differentiable

at the point Z*(x,t) in space E(ﬁ}).

We will prove that the homogeneous equation :bﬂ/fh’?:')ﬁ has only a trivial

solution. If A € ?(0,.) ,then equation MeeAN7a"A is equivalent to the

boundary problem

F ol Lt =) u-

Jg (2,2, u*(x,8), 24 (x,2) 4 | () € 0. ]

u(x,0)=0, x€(0,m); u(o,'f):—-u{n;t)'o, te€lo7]

This homogeneous problem has only a zero solution. If
k 52’(61,), L*,ﬁf/fa')’b, » is satisfied it is essential that J € F{pr)

Hence, h1 = 0.

Uner the conditions stipulated in this section the theorem concerning the
convergence of approximate solutions to the exact solutions is applicable
[1, pp. 293-294].

In view of this theorem we also find numbers';,,il » such that when n = n,

there is a unique solution Zn(x,t) of equation (38) in the sphere = . 1?%{6 Je‘a

-

all such approximate solutions Zn(s,t) converge on Z*(x,t) in the bound of

space E(Q&) and the estimate of convergence

7 :.5?'- /1'"3';?? B ]3// 2,8y, € 2, WK 2 'JI’?_ e5)

¢lo i3

£

is valid where q22,‘qé3 are constant.

From mterpolatlon theorem [4] we derive '-&',-u‘f 2’/ ‘ &, (3*-(;- f-y( *g.. & ,.,)_‘
- — &re. $2¢ .
where F '(r )= a(f z (3( f)) Tt (x,¢)) is the best uniform approxi-
o
mation of the function A*(x t) by the trigonometric polynomials of order not
exceeding n in terms of variable x for fixed ¢, ¢ €L07); fpifoc = are

absolute constants.

To each solution Zn(x,t) of problem (38) there corresponds a solution

Un(x,t) of problem (30), (31) in view of estimate (35)

1, “"’,.; 5""’2 ”a( _€2,.9,, 02" kﬂa.@] S

Consequently the following theorem is valid:
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Theorem 3. When all the functions of this section are satisfied numbers

n,, 0,, are found such that when n 2 n there exist unique approximate

4

solutions Un(x,t} .in sphere ",""‘,4 “P 2;, and the estimates

7+§ 'P
S PR _—H*Efﬂr—:‘é:’_-.{ :t»( 30+ ’u&")’
BT, om0
B bl 1) - K, (B-0)l, é}/l(ﬁ,-t)«‘-(;% L)l
* Susl (F-L)u* -5, (L -4l €
€ 3. En ((ﬁ! =4) ‘f'(-‘l',‘}) (2“ +* 2‘_’&1' n) .

are satisfied.

.‘— e
Note 5. If the function -g-;i ("’t)-“—‘f’(*'t) has continuous derivative /26
5",:[(;{-1.)«'(1;1)], #=42,..., when satisfying in terms of x the Holder
condition with index &, 0<J4<7 , uniform with respeE:t to t, then according to
: L (J;‘,“' S “ y
the Jackson theorem [4] f (3_3 (.rl') Lu*(xt)) < L.k, . Ciba/ 2 2 where

{re)! rn-I)an
Ay is the Holder constant of the function ﬁ_[{n l}a'(xt‘ﬂ

Note 6. 1If :c[q,l,? s the results of this section remain unchanged

after linear substitution of variables § = 7!':;"’7‘,-

4. Collocation method for nonstationary Navier-Stokes equation system

for dynamic viscosity of incompressible fluid.

We shall examine the follow_ulg boundary problem in the range QT
e (X0 c«cl'-t‘, acf&'T)

_ﬁt{x,ﬂ 3 3‘“*'9 degfp(x.&»ﬁ €), (x,t)eQ (39)

whHaws Tx e (v fx,ﬁ,‘bift t), By(x,0)), Pl pix¢) =
e ,Qur 8, 0,0), Fx0=(hle s f te ) o)
(41)

g.;‘.s(ﬁﬂ,o, (z,¢) € @
Pe,0)=3(40)=(0,00), ¢€l07],

(42)

© %(x,0=(0,0,0), ' x £ a’é,l)
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It follows from relation (40) and (41) that %, (e ¢é)=0  Systems (39),
(42) are broken down into independent equations for determining the functions
deg  p(x,8), % 1%,6), 3,69,

We will assume that the functions }{73?2i‘;§(a;§) are Holder-continuous
with 8' o-:::u in closed range QT Furthermore, f;‘ﬂ,ﬂ", (6,¢)=
-f;(l ¢)= f;?&t)-o when ¢ €L0,7].
";",(*,t):' 1;'(".'!‘) is sought in the form

= —

The approximate solution

b (A P e Wl z  An w7 Lx-a)
Vo(x, ) = 2= A, (1 g-a

2 "(x,¢) = 3’1 Uy G v e =)

a

. R ¢ ] s .
The unknown functions _)rrn"t), T VU, 121,00, are determined from the con-

dition that equation (39) is satisfied in the given system of points x, C£h f]
i.e., from the system of 2n first-order differential equations. We will assume

S —

x, A= 2"—5-—{——‘31 ax=1., . ,n

PP x
There exists the unique solution % (x,t), } (nt) of problem (39)-(42) in
e A
view of the assumptions relative to the functions f;(x't) fz(rtﬁf
Using the results of the proceding section we arrive at the following
theorem:
Theorem 4. Let the functions f;(k,ﬁ,f;fhfl satisfy the state of this
condition.
Then for sufficiently large n there exist unique approximate solutions

) = 1"'
”1’. .)”o

cay oyl ) 7By =0 3y e
v, (x,t), &, (%t and #% , -, ﬁifs A, s@ -for

The rate of convergence is characterized by the inequalities

L - i < 9., 90 JuetPusbrn) ,
(e ¥ & n)
(] 2 ) ,_J’?I____—_
J J“, ol g : < 21-1 ?J - 3 ’
yoy V)
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IR - E)Y™ o a5 B e B o)
ng-o g;.;._;-*-r%-v;-‘;,n:tm)sz,.b,. g,as.;“m{ /28

Here Ay7s dpg aTe the Holder constants of the functions g(’.f),f{;(?,é}
respect%vely, and q28’ 4z, are absolute constants. The bounds
’ui ";’-\n T hd
c
Aost®) €O

The author greatfully acknoledges the assistance of G. I. Petrov, under

are defined in Section 3.

whose supervision this work was done.
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